Vector Search
FluidGrids provides advanced vector search capabilities that enable semantic search and similarity matching across your data. Our platform integrates with leading vector databases and provides optimized search algorithms for various use cases.
Core Features
Vector Database Integration Supported vector stores:
FluidGrids integrates with major vector databases:
- Pinecone for scalable vector search
- Weaviate for semantic search
- Milvus for high-performance queries
- Qdrant for filtered search
- ChromaDB for local development
Embedding Generation Multiple embedding options:
Support for various embedding models:
- OpenAI embeddings
- Cohere embeddings
- HuggingFace models
- Custom embeddings
- Multi-modal embeddings
Implementation Guide
Basic Setup Configure vector search:
from fluidgrids.vector import VectorStore
store = VectorStore(
provider="pinecone",
dimension=1536,
metric="cosine"
)
# Index documents
store.index_documents(
documents=[doc1, doc2],
batch_size=100
)
Search Configuration Implement search functionality:
# Semantic search
results = store.search(
query="example query",
top_k=5,
threshold=0.8
)
# Hybrid search
results = store.hybrid_search(
query="example query",
filters={"category": "tech"},
weights={"semantic": 0.7, "keyword": 0.3}
)
Advanced Features
Filtering & Faceting Advanced query capabilities:
# Filtered search
results = store.search(
query="example",
filters={
"date": {"$gt": "2023-01-01"},
"category": ["tech", "ai"]
}
)
# Faceted search
results = store.faceted_search(
query="example",
facets=["category", "author"],
facet_size=10
)
Clustering & Analysis Data analysis features:
from fluidgrids.vector import VectorAnalytics
# Cluster vectors
clusters = VectorAnalytics.cluster(
vectors,
n_clusters=5,
algorithm="kmeans"
)
# Analyze similarity
similarity = VectorAnalytics.similarity_matrix(
vectors,
metric="cosine"
)
Performance Optimization
Index Configuration Optimize index performance:
index_config:
shards: 3
replicas: 2
pod_type: p1.x1
metadata_config:
indexed: ["category", "date"]
Query Optimization Enhance search performance:
# Optimized batch search
results = store.batch_search(
queries=["query1", "query2"],
config={
"ef": 100,
"nprobe": 10
}
)
Monitoring & Analytics
Performance Metrics Track search performance:
metrics = store.get_metrics(
timeframe="1h",
include=[
"latency",
"throughput",
"cache_hits"
]
)
Usage Analytics Monitor system usage:
analytics = store.get_analytics(
start_date="2024-01-01",
metrics=["queries", "indexing"]
)
Best Practices
Implementation Guidelines Follow these practices:
- Choose appropriate embedding models
- Optimize index configuration
- Implement proper filtering
- Monitor performance metrics
- Regular index maintenance
Search Optimization Enhance search quality:
- Fine-tune similarity thresholds
- Implement hybrid search
- Use appropriate filters
- Optimize batch sizes
- Regular performance testing
Getting Started
Begin implementing vector search:
- Review Vector DB Setup
- Explore Search Examples
- Learn Optimization Tips
For vector search support, contact our AI Team.