RAG Implementation
FluidGrids provides a sophisticated Retrieval Augmented Generation (RAG) implementation that enables you to build context-aware AI applications. Our platform combines advanced retrieval mechanisms with state-of-the-art language models to deliver accurate, contextually relevant responses.
Core Components
Document Processing Intelligent document handling:
Our document processing pipeline includes:
- Multi-format support (PDF, Word, HTML)
- Smart text extraction
- Metadata preservation
- Structure recognition
- Content normalization
Chunking Strategies Advanced text segmentation:
Implement various chunking approaches:
- Semantic chunking
- Sliding window
- Fixed-size chunks
- Overlap control
- Boundary preservation
Implementation Guide
Basic Setup Configure RAG system:
from fluidgrids.rag import RAGSystem
# Initialize RAG
rag = RAGSystem(
embedding_model="openai",
llm_model="gpt-4",
vector_store="pinecone"
)
# Process documents
rag.process_documents(
documents=["doc1.pdf", "doc2.docx"],
chunk_size=500,
overlap=50
)
Query Processing Handle user queries:
# Simple query
response = rag.query(
"What is the project timeline?",
max_tokens=200
)
# Advanced query
response = rag.query(
"Explain the technical architecture",
context_window=5,
temperature=0.7,
filters={"domain": "technical"}
)
Advanced Features
Context Management Sophisticated context handling:
from fluidgrids.rag import ContextManager
# Configure context
context = ContextManager(
window_size=3,
relevance_threshold=0.8,
deduplication=True
)
# Query with context
response = rag.query(
"Follow-up question",
context=context,
conversation_history=history
)
Hybrid Search Combined search strategies:
# Configure hybrid search
results = rag.hybrid_search(
query="technical requirements",
weights={
"semantic": 0.7,
"keyword": 0.3,
"metadata": 0.2
},
filters={"category": "technical"}
)
Performance Optimization
Caching System Implement response caching:
from fluidgrids.rag import ResponseCache
# Configure cache
cache = ResponseCache(
ttl=3600,
max_size=1000,
strategy="lru"
)
# Query with cache
response = rag.query(
"Cached query",
cache=cache
)
Batch Processing Handle multiple queries:
# Batch processing
responses = rag.batch_query(
queries=["query1", "query2"],
max_concurrent=5,
batch_size=10
)
Quality Controls
Response Validation Ensure response quality:
from fluidgrids.rag import QualityChecker
# Configure validation
checker = QualityChecker(
checks=[
"relevance",
"factuality",
"coherence"
]
)
# Validate response
quality_score = checker.validate(
query="What is the timeline?",
response=response,
context=retrieved_context
)
Source Attribution Track information sources:
# Get source attribution
sources = rag.get_sources(
response,
include_metadata=True,
confidence_threshold=0.8
)
Best Practices
Implementation Guidelines Follow these practices:
- Optimize chunk sizes
- Configure proper overlap
- Implement caching
- Monitor performance
- Regular index updates
Query Optimization Enhance query quality:
- Use appropriate context
- Implement hybrid search
- Configure filters
- Validate responses
- Track performance
Getting Started
Begin implementing RAG:
- Review RAG Patterns
- Explore Example Applications
- Learn Optimization Tips
For RAG implementation support, contact our AI Team.