Skip to main content

RAG Implementation

FluidGrids provides a sophisticated Retrieval Augmented Generation (RAG) implementation that enables you to build context-aware AI applications. Our platform combines advanced retrieval mechanisms with state-of-the-art language models to deliver accurate, contextually relevant responses.

Core Components

Document Processing Intelligent document handling:

Our document processing pipeline includes:

  • Multi-format support (PDF, Word, HTML)
  • Smart text extraction
  • Metadata preservation
  • Structure recognition
  • Content normalization

Chunking Strategies Advanced text segmentation:

Implement various chunking approaches:

  • Semantic chunking
  • Sliding window
  • Fixed-size chunks
  • Overlap control
  • Boundary preservation

Implementation Guide

Basic Setup Configure RAG system:

from fluidgrids.rag import RAGSystem

# Initialize RAG
rag = RAGSystem(
embedding_model="openai",
llm_model="gpt-4",
vector_store="pinecone"
)

# Process documents
rag.process_documents(
documents=["doc1.pdf", "doc2.docx"],
chunk_size=500,
overlap=50
)

Query Processing Handle user queries:

# Simple query
response = rag.query(
"What is the project timeline?",
max_tokens=200
)

# Advanced query
response = rag.query(
"Explain the technical architecture",
context_window=5,
temperature=0.7,
filters={"domain": "technical"}
)

Advanced Features

Context Management Sophisticated context handling:

from fluidgrids.rag import ContextManager

# Configure context
context = ContextManager(
window_size=3,
relevance_threshold=0.8,
deduplication=True
)

# Query with context
response = rag.query(
"Follow-up question",
context=context,
conversation_history=history
)

Hybrid Search Combined search strategies:

# Configure hybrid search
results = rag.hybrid_search(
query="technical requirements",
weights={
"semantic": 0.7,
"keyword": 0.3,
"metadata": 0.2
},
filters={"category": "technical"}
)

Performance Optimization

Caching System Implement response caching:

from fluidgrids.rag import ResponseCache

# Configure cache
cache = ResponseCache(
ttl=3600,
max_size=1000,
strategy="lru"
)

# Query with cache
response = rag.query(
"Cached query",
cache=cache
)

Batch Processing Handle multiple queries:

# Batch processing
responses = rag.batch_query(
queries=["query1", "query2"],
max_concurrent=5,
batch_size=10
)

Quality Controls

Response Validation Ensure response quality:

from fluidgrids.rag import QualityChecker

# Configure validation
checker = QualityChecker(
checks=[
"relevance",
"factuality",
"coherence"
]
)

# Validate response
quality_score = checker.validate(
query="What is the timeline?",
response=response,
context=retrieved_context
)

Source Attribution Track information sources:

# Get source attribution
sources = rag.get_sources(
response,
include_metadata=True,
confidence_threshold=0.8
)

Best Practices

Implementation Guidelines Follow these practices:

  • Optimize chunk sizes
  • Configure proper overlap
  • Implement caching
  • Monitor performance
  • Regular index updates

Query Optimization Enhance query quality:

  • Use appropriate context
  • Implement hybrid search
  • Configure filters
  • Validate responses
  • Track performance

Getting Started

Begin implementing RAG:

For RAG implementation support, contact our AI Team.