LLM Integration
FluidGrids provides sophisticated capabilities for integrating Large Language Models (LLMs) into your workflows. Our platform supports various LLM providers and offers advanced features for optimizing model performance and cost.
Supported Models
OpenAI Integration Integrate OpenAI models:
FluidGrids supports various OpenAI models:
- GPT-4 and variants
- GPT-3.5-turbo series
- Embeddings models
- Fine-tuned models
- DALL-E models
Anthropic Integration Leverage Anthropic models:
Available Anthropic models:
- Claude-2 and variants
- Claude-instant
- Custom-trained models
- Specialized versions
- Research models
Integration Setup
Configuration Set up LLM integration:
llm:
provider: openai
model: gpt-4
config:
temperature: 0.7
max_tokens: 2000
top_p: 0.95
API Authentication Configure API access:
from fluidgrids.llm import LLMClient
client = LLMClient(
provider="openai",
api_key="YOUR_API_KEY",
organization="YOUR_ORG_ID"
)
Advanced Features
Prompt Engineering Optimize prompts:
from fluidgrids.llm import PromptTemplate
template = PromptTemplate(
template="Analyze the following {text}",
input_variables=["text"]
)
response = client.generate(
prompt=template,
parameters={
"text": input_text
}
)
Context Management Handle conversation context:
from fluidgrids.llm import ConversationManager
manager = ConversationManager()
manager.add_message("user", "Initial query")
manager.add_message("assistant", "Initial response")
response = client.generate(
conversation=manager,
new_message="Follow-up question"
)
Performance Optimization
Caching System Implement response caching:
from fluidgrids.llm import ResponseCache
cache = ResponseCache(
ttl=3600, # 1 hour
max_size=1000
)
response = client.generate(
prompt="Query",
cache=cache
)
Batch Processing Handle multiple requests:
responses = client.batch_generate(
prompts=["Query 1", "Query 2"],
max_concurrent=5
)
Cost Management
Budget Controls Implement cost limits:
cost_control:
daily_limit: 100.0
alert_threshold: 80
action: pause # or warn
Usage Tracking Monitor API usage:
usage_stats = client.get_usage_stats(
timeframe="daily",
include_costs=True
)
Error Handling
Retry Logic Handle API failures:
from fluidgrids.llm import RetryStrategy
strategy = RetryStrategy(
max_retries=3,
backoff_factor=2
)
response = client.generate(
prompt="Query",
retry_strategy=strategy
)
Fallback Models Configure backup options:
fallback:
models:
- provider: anthropic
model: claude-instant
- provider: openai
model: gpt-3.5-turbo
Best Practices
Integration Guidelines Follow these practices:
- Implement proper error handling
- Use appropriate model selection
- Optimize prompt design
- Monitor performance metrics
- Manage API costs
Getting Started
Begin LLM integration:
- Review Model Selection Guide
- Explore Prompt Examples
- Check Cost Optimization
For LLM integration support, contact our AI Team.